No more mysteries: Apple's G5 versus x86, Mac OS X versus Linux
by Johan De Gelas on June 3, 2005 7:48 AM EST- Posted in
- Mac
Micro CPU benchmarks: isolating the FPU
But you can't compare an Intel PC with an Apple. The software might not be optimised the right way." Indeed, it is clear that the Final Cut Pro, owned by Apple, or Adobe Premiere, which is far better optimised for the Intel PC, are not very good choices to compare the G5 with the x86 world.So, before we start with application benchmarks, we performed a few micro benchmarks compiled on all platforms with the same gcc 3.3.3 compiler.
The first one is flops. Flops, programmed by Al Aburto, is a very floating-point intensive benchmark. Analyses show that this benchmark contains:
- 70% floating point instructions;
- only 4% branches; and
- Only 34% of instructions are memory instructions.
Al Aburto, about Flops:
" Flops.c is a 'C' program which attempts to estimate your systems floating-point 'MFLOPS' rating for the FADD, FSUB, FMUL, and FDIV operations based on specific 'instruction mixes' (see table below). The program provides an estimate of PEAK MFLOPS performance by making maximal use of register variables with minimal interaction with main memory. The execution loops are all small so that they will fit in any cache."Flops shows the maximum double precision power that the core has, by making sure that the program fits in the L1-cache. Flops consists of 8 tests, and each test has a different, but well known instruction mix. The most frequently used instructions are FADD (addition), FSUB (subtraction) and FMUL (multiplication). We used gcc -O2 flops.c -o flops to compile flops on each platform.
MODULE | FADD | FSUB | FMUL | FDIV | Powermac G5 2.5 GHz | Powermac G5 2.7 GHz | Xeon Irwindale 3.6 GHz | Xeon Irwindale 3.6 w/o SSE2* | Xeon Galatin 3.06 GHz | Opteron 250 2.4 GHz |
1 | 50% | 0% | 43% | 7% | 1026 | 1104 | 677 | 1103 | 1033 | 1404 |
2 | 43% | 29% | 14% | 14% | 618 | 665 | 328 | 528 | 442 | 843 |
3 | 35% | 12% | 53% | 0% | 2677 | 2890 | 532 | 1088 | 802 | 1955 |
4 | 47% | 0% | 53% | 0% | 486 | 522 | 557 | 777 | 988 | 1856 |
5 | 45% | 0% | 52% | 3% | 628 | 675 | 470 | 913 | 995 | 1831 |
6 | 45% | 0% | 55% | 0% | 851 | 915 | 552 | 904 | 1030 | 1922 |
7 | 25% | 25% | 25% | 25% | 264 | 284 | 358 | 315 | 289 | 562 |
8 | 43% | 0% | 57% | 0% | 860 | 925 | 1031 | 910 | 1062 | 1989 |
Average: | 926 | 998 | 563 | 817 | 830 | 1545 |
The results are quite interesting. First of all, the gcc compiler isn't very good in vectorizing. With vectorizing, we mean generating SIMD (SSE, Altivec) code. From the numbers, it seems like gcc was only capable of using Altivec in one test, the third one. In this test, the G5 really shows superiority compared to the Opteron and especially the Xeons.
The really funny thing is that the new Xeon Irwindale performed better when we disabled support for the SSE-2, and used the "- mfpmath=387" option. It seems that the GCC compiler makes a real mess when it tries to optimise for the SSE-2 instructions. One can, of course, use the Intel compiler, which produces code that is up to twice as fast. But the use of the special Intel compiler isn't widespread in the real world.
Also interesting is that the 3.06 GHz Xeon performs better than the Xeon Irwindale at 3.6 GHz. Running completely out of the L1-cache, the high latency (4 cycles) of the L1-cache of Irwindale hurts performance badly. On the Galatin Xeon, which is similar to Northwood, Flops benefits from the very fast 2-cycle latency.
The conclusion is that the Opteron has, by far, the best FPU, especially when more complex instructions such a FDIV (divisions) are used. When the code is using something close to the ideal 50% FADD/FSUB and 50% FMUL mix and is optimised for Altivec, the G5 can roll its muscles. The normal FPU is rather mediocre though.
Micro CPU benchmarks: isolating the Branch Predictor
To test the branch prediction, we used the benchmark " Queens". Queens is a very well known problem where you have to place n chess Queens on an n x n board. The catch is that no single Queen must be able to attack the other. The exhaustive search strategy for finding a solution to placing the Queens on a chess board so they don't attack each other is the algorithm behind this benchmark, and it contains some very branch intensive code.Queens has about:
- 23% branches
- 45% memory instructions
- No FP operations
RUN TIME (sec) | |
Powermac G5 2.5 GHz | 134.110 |
Xeon Irwindale 3.6 GHz | 125.285 |
Opteron 250 2.4 GHz | 103.159 |
At 2.7 GHz, the G5 was just as fast as the Xeon. It is pretty clear that despite the enormous 31 stage pipeline, the fantastic branch predictor of the "Xeon Pentium 4" is capable of keeping the damage to a minimum. The Opteron's branch predictor seems to be at the level of G5's: the branch misprediction penalty of the G5 is 30% higher, and the Opteron does about 30% better.
The G5 as workstation processor
It is well known that the G5 is a decent workstation CPU. The G5 is probably the fastest CPU when it comes to Adobe After Effects and Final Cut Pro, as this kind of software was made to be run on a PowerMac. Unfortunately, we didn't have access to that kind of software.First, we test with Povray, which is not optimised for any architecture, and single-threaded.
Povray Seconds |
|
Dual Opteron 250 (2.4 GHz) | 804 |
Dual Xeon DP 3.6 GHz | 1169 |
Dual G5 2.5 GHz PowerMac | 1125 |
Dual G5 2.7 GHz PowerMac | 1049 |
Povray runs mostly out of the L2- and L1-caches and mimics almost perfectly what we have witnessed in our Flops benchmarks. As long as there are little or no Altivec or SSE-2 optimisations present, the Opteron is by far the fastest CPU. The G5's FPU is still quite a bit better than the one of the Xeon.
The next two tests are the only 32 bit ones, done in Windows XP on the x86 machines.
Lightwave 8.0 Raytrace |
Lightwave 8.0 Tracer Radiosity |
|
Dual Opteron 250 (2,4 GHz) | 47 | 204 |
Dual Xeon DP 3,6 GHz | 47.3 | 180 |
Dual G5 2,5 GHz PowerMac | 46.5 | 254 |
The G5 is capable of competing in one test. Lightwave rendering engine has been meticulously optimised for SSE-2, and the " Netburst" architecture prevails here. We have no idea how much attention the software engineers gave Altivec, but it doesn't seem to be much. This might of course be a result of Apple's small market share.
Cinema 4D Cinebench |
|
Dual Opteron 250 (2.4 GHz) | 630 |
Dual Xeon DP 3.6 GHz | 682 |
Dual G5 2.5 GHz PowerMac | 638 |
Dual G5 2.7 GHz PowerMac | 682 |
Maxon has invested some time and effort to get the Cinema4D engine running well on the G5 and it shows. The G5 competes with the best x86 CPUs.
116 Comments
View All Comments
mongo lloyd - Tuesday, June 7, 2005 - link
At least the non-ECC RAM, that is.mongo lloyd - Tuesday, June 7, 2005 - link
Any reason for why you weren't using RAM with lower timings on the x86 processors? Shouldn't there at least have been a disclaimer?jhagman - Tuesday, June 7, 2005 - link
OK, this clears it up, thanks.One little thing still, what is the number you are giving in the ab results table? Is it requests per second or perhaps the transfer rate?
demuynckr - Tuesday, June 7, 2005 - link
jhagman:As i mentioned before, we used gcc 3.3.3 for all linux, and gcc 3.3 mac compiler on apple, because that was the standard one.
I did a second flops test with the gcc 4.0 compiler included on the Tiger cd, and the flops are much better when compiled with the -mcpu=g5 option which did not seem available when using the gcc 3.3 Apple compiler.
As for ab i used these settings,
ab -n 100000 -n x http://localhost/
x for the various concurrencies: 5,20,50,100,150.
spinportal - Monday, June 6, 2005 - link
Guess there's no one arguing that the PPC is not keeping its paces with the current market, but rather OS/X able to do Big Iron computing. And if rumors be true, where will you be able to get a PPC built once Apple drops IBM for Intel?In a Usenet debate in 93, Torvalds and Tannenbaum go roasting Mach microkernel vs. the death of Linux. Seems Linus' work will be seeing more light of day, and Mach go the way of the dodo. Will Apple rewrite OS/X for Intel x86/64? As far as practical business sense, that's like shooting off one's leg foot.
spinportal - Monday, June 6, 2005 - link
jhagman - Monday, June 6, 2005 - link
Could you please give the exact method of testing apache with ab? It is really hard to try to redo the tests when one does not know which methodology was used. The amount of clients and switches of ab would be appreciated.Also an answer to why Apple's newest gcc (4.0) was not used would be an interesting one and did you _really_ use gcc 3.3.3 and not Apple's gcc?
Other than these omissions I found the article very interesting, thanks.
demuynckr - Monday, June 6, 2005 - link
Yes I have read the article, I also personally compiled the microbenchmarks on linux as well as on the PPC, and I can tell you I used gcc 3.3 on Mac for all compilation needs :).webflits - Monday, June 6, 2005 - link
demuynckr, did your read the article?"So, before we start with application benchmarks, we performed a few micro benchmarks compiled on all platforms with the SAME gcc 3.3.3 compiler. "
BTW I ran the same tests using Apple's version of gcc 3.3
As you can see my 2.0Ghz now beats the 2.5Ghz on 5 of the 8 tests, and a 2.7Ghz G5 would be on par with the Opteron 250 when you extrapolate the results.
Lets face it, Anandtech screwed up by using a crippled compiler for the G5 tests
----------------------------
GCC 3.3/OSX 10.4.1/2.0GHz G5
FLOPS C Program (Double Precision), V2.0 18 Dec 1992
Module Error RunTime MFLOPS
(usec)
1 4.0146e-13 0.0140 997.2971
2 -1.4166e-13 0.0108 648.4622
3 4.7184e-14 0.0089 1918.5122
4 -1.2546e-13 0.0139 1076.8597
5 -1.3800e-13 0.0312 928.9079
6 3.2374e-13 0.0182 1596.1407
7 -8.4583e-11 0.0348 344.3954
8 3.4855e-13 0.0196 1527.6638
Iterations = 512000000
NullTime (usec) = 0.0004
MFLOPS(1) = 827.5658
MFLOPS(2) = 673.7847
MFLOPS(3) = 1037.6825
MFLOPS(4) = 1501.7226
demuynckr - Monday, June 6, 2005 - link
Just to clear things up: on linux the gcc 3.3.3 was used, on macintosh gcc 3.3 was used (the one that was included with the OS).